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Examined is a consequence of using the probability to calculate both the entropy of a 
system and as a measure of the likelihood of the system being found in a specific 
microstate. Using three simple examples, it is found in each case that a contradiction 
exists. The contradiction arises if we require that the entropy of a microstate in which the 
system can be found must equal that of the systems entropy as calculated using quantum 
statistical mechanical theory. It is argued that the contradiction can be resolved by 
retaining the usual equations of statistical mechanics, but interpreting the meaning of the 
probabilities so that they no longer provide a measure of the system being found in a 
specific microstate. 
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Probability in statistical mechanics is used in two different ways. The entropy of the system is 
computed using the probabilities as is the chance that the system will be found in a particular 
microstate. We look at two particularly simple systems to show that the usual meanings ascribed 
to the probability lead to a contradiction. In order to resolve the contradiction we offer an 
alternate interpretation. 
 
Consider a simple system consisting of a 50/50 mixture of “red” and “green” atoms arranged on 
a line. The system is isolated and at equilibrium. We ignore fluctuations and vibrations.  
 
For a system consisting of n  atoms, the atoms can be arranged in M  unique configurations or 
microstates, where 
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We denote the ket corresponding to microstate i  by i . 

 
The ket corresponding to the state of the system,  ,   
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The quantity ip  is given by 

 
 i i ip c c . (3) 

 
At equilibrium 
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We arbitrarily pick one possible microstate of the system, say, 
 

…R, G, G, G, R, G, R, R, G, … 
 
This microstate has a symmetric microstate 
 

…G, R, R, R, G, R, G, G, R, … 
 
More generally, for every possible configuration of red and green balls there is a symmetric 
configuration such that there is a red ball on a site in one configuration and a green ball on the 
same site in the symmetric configuration.  
 
Summing over all microstates the probability of finding a red ball on site k , r

kq , is 
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When there is a 50/50 chance of finding a red ball at each location on the line, the distribution is 
random [1]. We have the not surprising result that the equilibrium state of this system consists of 
a random arrangement of red and green balls on the line. 
 
Following this line of reasoning, the requirement that equilibrium state is random means that 
non-random microstates such as  
 

…R, G, R, G, R, G, R, G, R, G, … 
 
and 
 

…R, R, R, R, R, G, G, G, G, G, … 
 
can never occur, though they entered into the calculation of the chance of finding a red ball on a 
site. 
 
We have a contradiction. On one hand, the ip ’s, corresponding to both equilibrium and non-

equilibrium microstates are all equal and each of them contribute via Eq’s  (2) and (3) to the 



description of the state of the system  as a function of the i  kets. On the other hand the 

same ip ’s lead to the conclusion that the system must be in a random microstate. This implies 

that non-random microstates cannot occur. We resolve the contradiction by retaining the above 
equations, including the definition of ip  in Eq. (3), but we no longer use the “probability” ip  as a 

measure of the chance that the system will be in a particular microstate. 
 
 
A second way of looking at this contradiction is to examine the entropy of the system defined by 
the state ket  and compare it to that of a microstate, both at equilibrium. 

 
The entropy for the system, sysS , is given by 
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At equilibrium we can substitute ip  from Eq. (4) to give 

 
 lnsysS k M .  (8) 
 
Substituting M  from Eq. (1) and using Sterling’s approximation yields 
 
 ln 2sysS kn .  (9) 
 
The entropy of a single random microstate in the above equilibrium system can be found using 
information theory [2, 3]. The uncertainty, or entropy on one site k , in thermodynamically 
consistent units is  
 
 ( ln ln )r r g g

k k k k ks k q q q q   ,  (10) 

 
where the superscripts r  and g  stand for red and green, respectively. As both r

kq  and g
kq are ½, 

 
 ln 2ks k . (11) 

 
There are n  sites and as the probabilities for each site are independent we obtain for the entropy 
of the microstate, msS , 
 
 ln 2msS kn .  (12) 
 
Thus 
 
 sys msS S .  (13) 
 



At equilibrium the entropy of the system   is a function of all the ip ’s; the entropy of a 

microstate is a function only of the arrangement of atoms in that microstate. We make the 
fundamental assumption that the entropy of the system in state   at equilibrium must be the 

same as the entropy of the microstate in which we find the system. This implies that as non-
random microstates do not have the same entropy as that of the system, they can never occur. 
The ip ’s should not be interpreted as the probability that the system will be in a particular 

microstate. 
 
We now consider a more general case of an isolated system at equilibrium, consisting as before 
of a line of n  atoms. Each atom on a site can take on a quantized range of values, such as 
momentum. Again we calculate the entropy. 
 
We denote by kjq  the probability of an atom on site k  taking on a specific value with an index 

j . At equilibrium, in order for the entropy of the system to be a maximum, atoms with property 

j  must be randomly arranged on the line. Or equivalently, kj ljq q for all k  and l . As kjq  is 

independent of k , we use jq  in the following. 

 
For each site 
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 where the property can take on r  values. The total number of particles with property j , jb , is 

 
 j jb q n .  (15) 

 
 The number of ways, M , the jb particles can be arranged on the line is 
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Substituting M into Eq. (8), using Sterling’s approximation and Eqs. (14) and (15) yields for the 
entropy of the system, sysS , 
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Using the information theory approach, the entropy for a single site, ks , in an equilibrium 

microstate is 
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Multiplying the RHS of Eq. (18) by n , as there are n  sites, yields for the entropy of the 
microstate, msS , 
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At equilibrium the entropy of the system is equal to the entropy of an equilibrium microstate, 
again satisfying Eq. (13). 
 
As in the first example, the ip ’s associated with all the M  microstates, equilibrium and non-

equilibrium, are needed for the calculation of the entropy of system  . But, as there, we 

expect that the system can only be in a microstate that has the same entropy as  .  

 
Microstates that have lower entropy than that of a system at equilibrium are not accesable. This 
is accord with the second law of thermodynamics, where an isolated system cannot 
spontaneously take on a microstate with lower entropy. 
 
We now consider the general case where our viewpoint is inspired by the above. 
 
Consider an isolated thermodynamic system. The system need not be in equilibrium. 
 
The state of the system   is given by Eq. (2) and the quantities ip  are given by Eq. (3). The 

entropy of the system is given by Eq. (7). As    evolves its entropy sysS  evolves as given by 

Eq. (2), (3) and (7). 
 
The microstate that the system is in evolves so that its entropy remains equal to that of the 
entropy of the system. Microstates that do not have the same entropy as the system can never be 
accessed.   
 
 
Summary 
 
We described the state of a isolated thermodynamic system two ways. The first is the quantum 
mechanical description given by the state ket. The second is in terms of the properties of the 
atoms in a microstate. Standard quantum and statistical mechanical theory calls for the system at 
equilibrium to be equally likely in any microstate, irrespective of whether or not that microstate 
has the same entropy as the state ket. We asserted that the entropy of a microstate must be the 
same as that of the state ket. Microstates with other entropies cannot be observed irrespective of 
the value of their associated probabilities. 
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What is Random… Location 235 
   
“…the quintessimal example of a random process…: The succession of zeros and ones is 
independent and uniformly distributed with each digit having an equal chance of occurring.”  


